Systems Level Analysis of Cancer Heterogeneity

Teresa Przytycka
NIH / NLM / NCBI

Key challenges in cancer data analysis

- Complexity: Multiple driver mutations are typically required for caner progression
- Heterogeneity: Phenotypically similar cancer cases might be caused by different sets of driver mutations
 - Driver mutations /alterations— mutations contributing to cancer progression
 - Passenger mutations neutral mutations accumulating during cancer progression
- Some driver mutations are rare
- Epistasis masking of the effect of one mutation by another mutation
- Cancer evolution

Network/Systems biology view

Motivation:

- Effects of genetic alteration propagate trough the network affecting downstream genes
- Different driver mutations often dysregulate common pathways

Main lines of attack:

- Examining known pathways for a signature of dysregulation
- Computational pathways discovery from highthroughput interaction data

Which network to use?

High throughput network versus "the true"

Three general techniques that utilize network based approaches in cancer studies

- Module cover
- Network Flow
- Mixture /topic models

Three general techniques that utilize network based approaches in cancer studies

- Module cover
- Network Flow
- Mixture models

Finding a representative set of dysregulated genes in disease cases

Goal: Given a set of dysregulated genes and disease cases, find a representative set of dysregulated genes

Module Cover Approach

Optimization problem:

Find <u>smallest cost</u> set of modules so that each disease case is covered at least k times

Cost is a function of:

- distance in the network of genes in same module
- A similarity measure (application dependent)
- number of modules (parameterized penalty)

Module Cover: Glioblastoma Data

Signature modules from GBM Dataset (REMBRANDT)

modules

<u>Different patients groups have different signature</u> modules

cases

Three general techniques that utilize network based approaches in cancer studies

- Module cover
- Network Flow
- Mixture models

Information flow from genotypic changes to expression changes

Copy number aberrations or/and mutations

Gene expression

Kim et al. PolS CB 2011/RECOMB 2010

Selecting "signature" genes

Explaining expression changes in the signature genes

Cancer Cases
CNV data

Cancer Cases
Gene expression data

eQTL analysis links expression variability to genotypic variability

Uncovering pathways of information flow between CNV and target gene

Tu *et al* Bioinfomatcis 2006 Suthram *et al* MSB 2008 Kim et al. PolS CB 2011/RECOMB 2010

Adding resistances differentiate likelihoods of the edges

Resistance - set to favor most likely path -based on gene expression values (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

Finding subnetworks with significant current flow

Resistance - set to favor most likely path -based on gene expression values (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

Repeat for other genes and significantly associated loci

Cancer Cases
CNV data

Cancer Cases Gene expression data

Are there common functional pathways?

Gene Hubs

MYC(110) E2F1(88) CREBBP(34) GRB2(27) E2F4(43) SP3(26) ESR1(25) TFAP2A(25) NFKB1(23) MYB(22) JUN(22) E2F2(22) **RELA(21)** AR(21) SP1(20) RPS27A(20) MAPK3(19) POU5F1(17) HIF1A(16) PPARA(15) CDC42(15) UBA52(13) CDK7(13) **UBE2I(11)** YBX1(13) YWHAZ(12) CEBPB(12) POU2F1(12) SMAD3(11) **TAL1(11)**

Pathway Hubs

Driving Copy number aberrations

GO biological process	#
cell cycle arrest	10
epidermal growth factor receptor signaling pathway	9
negative regulation of cell growth	9
Ras protein signal transduction	9
regulation of sequestering of triglyceride	8
cell proliferation	7
nuclear mRNA splicing, via spliceosome	7
regulation of cholesterol storage	7
nucleotide-excision repair	7
RNA elongation from RNA polymerase II promoter	7
insulin receptor signaling pathway	6
transcription initiation from RNA polymerase II promoter	6
N-terminal peptidyl-lysine acetylation	5
phosphoinositide-mediated signaling	5
positive regulation of lipid storage	4
positive regulation of specific transcription from RNA	3
polymerase II promoter	
positive regulation of epithelial cell proliferation	3
base-excision repair	2
negative regulation of hydrolase activity	2
gland development	2
positive regulation of MAP kinase activity	2
regulation of nitric-oxide synthase activity	2 2 2 2 2 2 2 2
estrogen receptor signaling pathway	2
regulation of receptor biosynthetic process	2
response to organic substance	2
JAK-STAT cascade	2
regulation of transforming growth factor-beta2	2
production	
G1/S transition of mitotic cell cycle	2
SMAD protein nuclear translocation	2

Three general techniques that utilize network based approaches in cancer studies

- Module cover
- Network Flow
- Mixture/topic models

modules

<u>Different patients groups have different signature</u> modules

cases

Phenotypic versus explanatory features

Phenotypic features:

Explanatory features

Survival time
Response to drugs,.....
Gene expression profile

- mutations, CNV, micro RNA level;
- Epigenetic factors,
- Sex, age, environment

Patient graph

Nodes – patients

Edges – phenotypic similarities

Key idea

neighbors in patient network should have similar explanatory features

Assuming k subtypes, generate feature distribution for them

Subtype I

EGFR_A 0.45 NF1_M 0.37 PTEN_A 0.21

. . . .

Subtype III

mirR218_H 0.38 ICDK2_D 0.22 SHC1_M 0.14 **Subtype II**

....

PDGFA_A 0.51 IDH1_M 0.29 M53_M 0.17

Subtype IV

CDK2B_D 0.37 EGFR_A 0.25

Cho et al. NAR 2013/RECOMB 2012

Based on patient's features represent each patient as mixture of the subtypes

Generate edges based on similarity of subtype mixtures

Optimize parameters to maximize likelihood of the patient -patient network

Visualization of subtypes distribution form a sample model

Patient-patient relationship based on 1000 models

Observation: No separate Neural group

Selected cancer related features

Observations: correctly recovered features form Varhaak et al. (TCGA)

AKT2 – most important defining feature of the Classical group

Potential benefits of using dys-regulated pathways as features

Summary

- Networks/Systems based approaches parovide new view of cancer data
- These methods are general and can be adopted to new types of data

Challenges

- Nosiness and incompletes and bias of interactome
- More data is needed to be able to account for age/sex/environment and other complex dependencies

Acknowledgments

Przytycka's group

DongYeon Cho

YooAh Kim

Phuong Dao

Xiangjun Du

Damian Wojtowicz

Jan Hoinka

Using 1,000 models to infer:

- Probabilistic relation between patients
- Probabilistic relation between features
- Probabilistic elation between features and patients

Case study of GBM (Glioblastoma Multiforme)

Varhaak et al. Classification

Mesenchymal

Classical

Proneural

Neural

patient network for GMB

Simultaneous modeling of phenotypic and explanatory features

In each model we assume

- k subtypes
- each subtype is defined by probability distribution of (explanatory) features
- each patient is a mixture of these subtypes
- patients with similar phenotypic features have mixtures

Visualization of subtypes distribution form a sample model

